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Abstract This paper presents exact solutions in terms of implicit functions and
hyperbolic functions to a nonconvex dissipative system, controlled by a Duffing–
van der Pol nonlinear equation with a fifth-order nonlinearity. Applications to the
complex Ginzburg–Landau equation are illustrated and several classes of uniformly
translating solutions are obtained accordingly.
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1 Introduction

Many physical, biological, and chemical phenomena can be described by nonconvex
systems with dissipations. One of the basic problems in the study of nonlinear systems
is to find exact solutions and to explicitly describe traveling wave behaviors. Mod-
ern theories describe traveling waves and coherent structures in a diverse variety of
fields, including general relativity, high-energy particle physics, plasmas, atmosphere
and oceans, animal dispersal, random media, chemical reactions, biology, nonlinear
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electrical circuits, and nonlinear optics. For example, in the latter, the mathematics
developed for describing the propagation of information via optical solitons is most
striking, attaining an incredible accuracy. It has been experimentally verified and
spans 12 orders of magnitude: from the wavelength of light to transoceanic distances.
It also guides the practical applications in modern telecommunications. Many other
nonlinear wave theories mentioned above can claim similar success [1].

By the fact that many nonlinear systems can be converted into nonlinear ordinary
differential equations (ODEs) after making proper traveling wave transformations,
exploring traveling waves for those nonlinear systems is somehow equivalent to find-
ing exact solutions of the corresponding ODEs. A typical example is the complex
Ginzburg–Landau equation (CGLE) [2,3]:

ut = αu + (b1 + ic1)uxx − (b2 − ic2)|u|2u − (b3 − ic3)|u|4u

+(b4 + ic4)(|u|2u)x + (b5 + ic5)(|u|2)xu, (1)

where u(x, t) is a complex function, and bi, ci (i = 1, 2, . . . , 5) and α are real coeffi-
cients. Assume that Eq. 1 admits a uniformly translating solution in the variable
ξ = x − vt of the form

u(x, t) = ei(kx−wt) · û(x − vt),

û(ξ) = a(ξ) · eiφ(ξ), (2)

where φ is a real function of the pseudo-time ξ . After substituting (2) into (1) and
setting the real part and imaginary part to zero, respectively, we have

−b1aξξ + (2c1D + 2kc1 − v)aξ + b1a(φξ )
2 + 2kb1aφξ + c1aφξξ

+ 2c1aξ φξ + c4a3φξ + (b1k2 − α)a + (b2 + c4k)a3 + b3a5

− (3b4 + 2b5)a
2aξ = 0 (3)

and

c1aξξ + (2kb1 + 2b1D)aξ − c1a(φξ )
2 + (v − 2kc1a)φξ + b1aφξξ

+ 2b1aξ φξ + b4a3φξ + (w − c1k2)a + (c2 + b4k)a3 + c3a5

− (3c4 + 2c5)a
2aξ = 0. (4)

In order to further simplify Eqs. 3 and 4, we let φ(ξ) satisfy a Riccati equation

φ′(ξ) = D + Ba2(ξ), (5)

where both D and B are constants to be determined, then Eqs. 3 and 4 reduce to

b1aξξ + (v − 2kc1 − 2c1D)aξ + (3b4 + 2b5 − 4Bc1)a
2aξ

+ (α − b1D2 − 2kb1D − b1k2)a − (2b1DB + 2kb1B + c4D

+ c4k + b2)a3 − (b1B2 + c4 + b3)a5 = 0 (6)

and

c1aξξ + (2kb1 + 2b1D)aξ + (4Bb1 + 3c4 + 2c5)a
2aξ

+ (w − c1D2 + vD − 2kDc1 − c1k2)a + (vB − 2c1DB − 2kc1B

+ b4D + c2 + b4k)a3 + (b4 − c1B2 + c3)a5 = 0, (7)

respectively.
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Note that Eqs. 6 and 7 have exactly the same form as the Duffing–van der Pol oscil-
lator with two polynomial nonlinearities, which was studied in a previous paper [4]

ẍ + (α + βx2)ẋ − γ x + x3 − µx5 = 0, (8)

where α, β, γ , and µ are real constants, and an overdot denotes differentiation with
respect to time. When αβ < 0, the existence of the limit cycle has been described
in [5]. Numerical simulations indicate that this system is very sensitive to the given
initial conditions and the dual solution plays an important role in understanding the
behavior of this nonconvex dynamical system [6,7]. Due to the appearance of a fifth-
order nonlinearity, solving Eq. 8 for exact solutions becomes more complicated and
it does not seem that the detailed study on this problem has been presented previ-
ously. Therefore, in this work we first restrict our attention to exact solutions of Eq.
8, then we apply both qualitative analysis presented in the preceding work [4] and
analytical results described herein to the study of the uniformly translating solution
of CGLE (1).

The rest of the paper is organized as follows. In Sect. 2, exact solutions of Eq. 8
in terms of implicit functions and hyperbolic functions are established by analyzing
homoclinic or heteroclinic trajectories of the corresponding equivalent systems, which
agree with qualitative analysis illustrated in [4]. In Sect. 3, more explicit exact solu-
tions in terms of hyperbolic functions and trigonometrical functions are found under
various parametric conditions by using a general ansatz. Applications of these solu-
tions to CGLE are demonstrated in Sect. 4 and several classes of uniformly translating
solutions are derived accordingly. In Sect. 5, we give a brief discussion.

2 Exact solutions in terms of implicit functions and hyperbolic functions

In many physical phenomena, only bounded analytical solutions of modeled systems
possess physical meaning and applications. Hence, in this section, it is reasonable for
us to start our study by limiting the attention to bounded exact solutions of Eq. 8,
even though unbounded exact solutions can be derived in the same manner.

Using the first equation in system 6 [4, p. 6], Eq. 8 can actually be reduced to an
Abel equation of the second kind

yy′ + (α + βx2)y − γ x + x3 − µx5 = 0, (9)

where y′ = dy
dx

. Continuing changing dependent and independent variables in (9) as

y dt = dx, x = −ρ · exp[(−1/β)t], t = −β

2
ln η (10)

when α · β = 4 and β2 · γ = −3 hold, Eq. 9 becomes

ρ′′(η) − β2

2
ρ2ρ′(η) − β2µ

4
ρ5 = 0. (11)

From Appendix A in [4], when µ = 0, Eq. 11 has an implicit solution as

η =
3
√

6c/β2

3c

[
1
2

ln

(
ρ2 + 2dρ + d2

ρ2 − dρ + ρ2

)
− √

3 arctan

( √
3ρ

ρ − 2d

)]
+ η0, (12)
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where c and η0 are integration constants, and d = 3
√

6c/β2. The second term in (12)
can be expressed as a logarithmic function, then we have

[
ρ + d

ρ2 − dρ + d2

][
(1 + √

3i)ρ − 2d

(1 − √
3i)ρ − 2d

]

= Texp
[

6c
d

(η − η0)

]
, (13)

where T = 1/d.

Making use of transformation (10) and changing to the original variables, we obtain
that when α · β = 4 and β2 · γ = −3 hold, Eq. 8 has an exact solution as

x = −ρ · exp[(−1/β)t], (14)

where ρ is determined by the implicit function (13) and η = exp(−2/β)t.
From Appendix A again, when µ = 0, Eq. 11 has one first integral of the form

ρ′(η) = β2

6 ρ3(η) + c. Choosing c = 0, we get a particular solution to Eq. 8:

x = ±
√−3C1e(1/β)t

β
√

C1e(2/β)t + C2
, (15)

where both C1 and C2 are arbitrary constants.
The above results are in agreement with the qualitative analysis undertook in the

preceding paper, in which we derived that there are two particular cases to Eq. 8:

Case 1 When µ = 0 and β �= 0, under the parametric choices α ·β = 4 and β2 ·γ = −3,
Eq. 8 has one first integral

e6t/β
(

(ẋ)2 + ẋ
[

2
3
βx3 + 2x

β
+ c1e−3t/β

]

+ x2
[

1
9
β2x4 + 2

3
x2 + 1

β2

]
+ c1xe−3t/β

[
1
3
βx2 + 1

β

])
= c2,

where c1 and c2 are arbitrary. Taking c1 = 2c and c2 = −c2, we have a particular case:

e(3/β)t
(

ẋ + β

3
x3 + x

β

)
+ c = 0.

Thus, Eq. 8 reduces to an Able’s equation of the fist kind

ẋ + 1
3
βx3 + 1

β
x = −ce− 3

β
t. (16)

When c = 0, solving Eq. 16 gives an exact solution as (15); when c �= 0, solving
Eq. 16 gives another exact solution as (14) which contains the implicit function (13).

Case 2 When α = 0 and β = 0, system (6) [4, p. 6] is degenerated to

ẋ = y,
ẏ = γ x − x3 + µx5.

(17)

Note that system (17) is symmetric about O(0, 0), the x-axis, and the y-axis, respec-
tively. Each bounded exact solution to Eq. 8 in this case corresponds to a homoclinic
or heteroclinic trajectory of system (17). Thus, in order to find the explicit exact solu-
tion to Eq. 8, according to the qualitative theory and bifurcation theory of dynamical
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systems [8–10], we need to analyze homoclinic or heteroclinic trajectories of system
(17). We know that system (17) has one first integral as

ẋ2 = γ x2 − x4

2
+ µx6

3
+ K,

where K is arbitrary real constant. Next, for the convenience of our statement, we
denote

p± =
⎧
⎨

⎩
±
√√

1−4γµ−1
−2µ

, µ �= 0,

±√
γ , µ = 0, γ > 0

and

q± = ±
√√

1 − 4γµ + 1
2µ

, µ > 0.

Due to the fact that system (17) is symmetrical, we only need to take discussions
on the right half plane {(x, y)|x ≥ 0, y ∈ R}. Applying the qualitative theory of planar
dynamical systems, we find that (1) when µ = 0, γ > 0 or µ < 0, γ > 0, there are
two equilibrium points on the right x-axis, namely, a saddle point O(0, 0) and a center
point A+(p+, 0); (2) when µ > 0 and γ < 0, O(0, 0) is a saddle point and B+(q+, 0)

is a saddle point; and (3) when µ > 0, γ > 0 and 1 − 4µγ > 0, O(0, 0) is a saddle
point, A+(p+, 0) is a center point and B+(q+, 0) is another saddle point. If 1 = 4µγ ,
O(0, 0) is still a saddle point O(0, 0), but A+ and B+ get coincided and change to a
degenerated equilibrium point. Specifically, we have

(1) In the case of µ = 0, γ > 0 or µ < 0, γ > 0, system (17) has two homoclinic

trajectories emanating from the saddle O: y2 = γ x2 − x4

2 + µx6

3 . Combining this
formula with system (17), we obtain an exact solution

x(t) = ±

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ

√
3

3 − 16µγ
sech2√γ (t − t0)

1
2

+
(

1
4

√
3

3 − 16µγ
− 1

4

)

sech2√γ (t − t0)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1/2

, (18)

where t0 is arbitrary.
(2) In the case of µ > 0 and γ < 0, system (17) has two heteroclinic trajecto-

ries connecting B+(q+, 0) and B−(q−, 0): y2 = γ x2 − x4

2 + µx6

3 + K1, where

K1 = −γ q2+ + q4+
2 − µq6+

3 and q− ≤ x ≤ q+. Combining this formula with system
(17), we obtain an exact solution

x(t) = q+
{

1 − sech S(t − t0)
1 − ν sech S(t − t0)

}1/2

, (19)

where

S = √
2q+ 4

√
1 − 4µγ , ν = 1 + 4

√
1 − 4µγ

−1 + 2
√

1 − 4µγ
. (20)
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(3) In the case of µ > 0, γ > 0 and 1 − 4µγ > 0, there are three subcases for system
(17): (a) when 16µγ − 3 = 0, there are two heteroclinic trajectories connecting
O(0, 0) and B+(q+, 0) or B−(q−, 0), and the associated exact solutions are

x(t) = ± {
2γ

[
1 ± tanh

√
γ (t − t0)

]}1/2 ; (21)

(b) when 16µγ − 3 < 0, there are two homoclinic trajectories terminating at
O(0, 0) and two heteroclinic trajectories connecting B+(q+, 0) and B−(q−, 0).
The forms of associated exact solutions are the same as (18) and (19), respec-
tively; (c) when 16µγ − 3 > 0, there are two homoclinic trajectories connecting
B+(q+, 0) and B−(q−, 0), and the associated exact solutions are

x(t) = q+
{

1 + sech S(t − t0)
1 + ν sech S(t − t0)

}1/2

, (22)

where S and ν are the same as given in (20).

3 A general ansatz

In this section, we continue our study of constructing exact solutions to Eq. 8 and
express them explicitly in terms of hyperbolic functions and trigonometrical func-
tions. Before our discussion, let us give a preliminary introduction of two special wave
solutions. Suppose that Eq. 8 has a solution x(t) which satisfies

x′(t) → 0, x′′(t) → 0 as |t| → +∞ (23)

and has the horizontal asymptotes as

lim
t→±∞ x(t) = D±, (24)

which are two roots of the algebraic equation

µx5(t) − x3(t) + γ x(t) = 0. (25)

Note that the roots of Eq. 25 are actually the x-coordinates of regular equilibrium
points of system (6) [4, p6] on the x-axis in the Poincaré phase plane. Following the
traditional definition: when D+ = D−, we call x(t) the bell-profile wave solution, and
when D+ �= D−, we call x(t) the kink-profile wave solution. Both types of wave solu-
tions play a crucial role and have wide applications in modern theoretical physics. In
the early 1960s, one particularly noteworthy contribution was the explosion of activity
unleashed by the numerical discovery of the soliton (solitary wave) by Zabusky and
Kruskal [11], Zabusky and Galvin [12], and Kruskal [13] a name intended to signify
particle-like quantities, and the earliest theoretical explanation by Gardner, Greene,
Kruskal, and Miura in 1960s and early 1970s [14–16], which subsequently led to the
present-day theory of integrable partial differential equations. Nonlinear waves and
coherent structures is an inter-disciplinary area that has many significant applications,
including nonlinear optics, hydrodynamics, plasmas and solid-state physics. In fact, for
any physical system where the dynamics is driven by, and mainly determined by, phase
coherence of the individual waves, it has many useful applications. For instance, the
Klein–Gordon equation has applications in quantum field theory and the KdV-type
equations are modeled from plasma physics and solid-state physics. Both of them have
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kink-profile wave solutions which have been used to calculate energy and momentum
flow and topological charge in the quantum field [17,18].

Multiplying both sides of Eq. 8 by x′(t) and integrating it from −∞ to t gives

1
2
[x′(t)]2 +

∫ t

−∞
[α + βx2(ξ)][x′(ξ)]2dξ − γ

2
x2(t) + 1

4
x4(t) − µ

6
x6(t) = c1,

where c1 is integration constant. Letting t → +∞ and −∞, respectively, we have
∫ +∞

−∞
[α + βx2(ξ)][x′(ξ)]2dξ − γ

2
D2+ + 1

4
D4+ − µ

6
D6+ = c1 (26)

and

−γ

2
D2− + 1

4
D4− − µ

6
D6− = c1. (27)

From (26) and (27), we obtain
∫ +∞

−∞
[α + βx2(ξ)][x′(ξ)]2dξ = γ

2
(D2+ − D2−) − 1

4
(D4+ − D4+) + µ

6
(D6+ − D6+). (28)

Using (25), we have

µD5+ − D3+ + γ D+ = 0 and µD5− − D3− + γ D− = 0,

which gives

D4+ − D4− = µ(D6+ − D6−) + γ (D2+ − D2−).

Hence, Eq. 28 can be reduced as
∫ +∞

−∞
[α + βx2(ξ)][x′(ξ)]2dξ = γ

4
(D2+ − D2−) − µ

12
(D6+ − D6+). (29)

Equation 29 indicates that when αβ > 0, if x(t) is an bounded exact solution to
Eq. 8 satisfying assumptions (23)–(25), then

α and
[γ

4
(D2+ − D2−) − µ

12
(D6+ − D6+)

]

must have the same sign. Furthermore, from (29) again, one can see that when α is not
equal to zero, Eq. 8 does not have bell-profile wave solutions, but kink-profile wave
solutions. This conclusion is helpful when we seek exact solutions of Eq. 8.

Now we use a general ansatz to construct implicit exact solutions to Eq. 8. This an-
satz was originally introduced by Fan et al. [19] and Yan [20] when they used it to seek
traveling solitary wave solutions to the Burgers-KdV equation and integrable coupled
nonlinear evolution equations, and modified by some researchers, for instance, Li et
al. [21] and Lu and Fan [22] when they investigated several KdV-type equations. The
basic idea is that for a given nonlinear ordinary differential equation

G
(
u, u′, u′′, u′′′, . . . , u(l)) = 0, (30)

where a prime denotes d
dξ

. In order to find explicit exact solutions of Eq. 30, we take
the following ansatz:

u(ξ) =
m∑

i=1

wi−1(ξ)

[
Aiw(ξ) + Bi

√
R + w2(ξ)

]
+ A0. (31)
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Here we assume that the new variable w = w(ξ) satisfies a Riccati equation

dw
dξ

= R + w2, (32)

where A0, Ai, Bi (i = 1, 2, . . . , m) and R are constants to be determined, and m
is a positive integer. However, after substitution of (31) into Eq. 30 and setting the
coefficient of the highest-order partial derivative term to the one of the highest-order
nonlinearity term, usually one can find that the constant m is not a natural number.
That is, m can be equal to either a fraction or a negative integer. In this case, we need
to make the following transformation prior to performing substitution.

(1) When m = q/p (p and q are relatively prime), we let

u(ξ) = χq/p(ξ), (33)

then substitute (33) into Eq. 30 and solve the resulting equation for the new
value of m of Eq. 31 by balancing the highest-order partial derivative term and
the leading nonlinear term.

(2) When m is a negative integer, we let

u(ξ) = χm(ξ), (34)

then substitute (34) into Eq. 30 and similarly solve the resulting equation for the
new value of m of Eq. 31 again. In general, the constant m can be converted into
a positive integer by means of the above transformation. Otherwise we have to
seek other proper transformations.

The procedure of the general ansatz can be summarized as follows:

• Step 1 Determine the values of m in (31) by balancing the highest-order partial
derivative term and the leading nonlinear term in (30). Specifically, (1) If m is
a positive integer then go to Step 2; (2) If m = q/p, p and q are integers and
relatively prime, we make the transformation (33) and then go back to Step 1; (3)
If m is a negative integer, we make the transformation (34) and then go back to
Step 1.

• Step 2 With the aid of mathematical softwares such as Maple, Matlab, and Math-
ematica, substituting (31) along with the condition (32) into Eq. 30 yields a system
of algebraic equations with respect to wi(R + w2)j/2 (j = 0, 1, . . . ; i = 0, 1, 2, . . .).

• Step 3 Collect all terms with the same power in wi(R + w2)j/2 (j = 0, 1, . . . ;
i = 0, 1, 2, . . .). Set the coefficients of the terms wi(R + w2)j/2 (j = 0, 1, . . . ; i =
0, 1, 2, . . .) to zero, and then obtain an over-determined system of nonlinear
algebraic equations with respect to the unknown variables R, A0, Ai, Bi (i =
1, 2, . . . , m).

• Step 4 Using the mathematical software again and applying the Wu-elimina-
tion method [23] to solve the above over-determined system of nonlinear alge-
braic equations generated in Step 3, we obtain the values of R, A0, Ai, Bi (i =
1, 2, . . . , m).

• Step 5 It is well known that the general solution of Eq. 32 can be classified as

(1) when R < 0,

w(ξ) = −√−R tanh(
√−Rξ), w(ξ) = −√−Rcoth(

√−Rξ). (35)
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(2) when R = 0,

w(ξ) = −1
ξ

.

(3) when R > 0,

w(ξ) = √−R tan(
√

Rξ), w(ξ) = −√
R cot(

√
Rξ). (36)

Therefore, according to Steps 1–5 and making use of the values of R, A0, Ai, Bi
(i = 1, 2, . . . , m) obtained in Step 4, we can construct a class of exact solutions of
Eq. 30 with various conditions.

Reverting to Eq. 8 and following Step 1, after balancing ẍ and x5, we derive m = 1/2.
Thus, making the transformation

x(t) = h1/2(t) (37)

and substituting (37) into Eq. 8, we have

2h(t)h′′(t) + 2βh2(t)h′(t) − [h′(t)]2 + 2αh(t)h′(t) − 4γ [h(t)]2

+ 4[h(t)]3 − 4µ[h(t)]4 = 0. (38)

Suppose that Eq. 38 admits the solution of the form (31). When β = 0, after substitut-
ing (31) into (38) and equating the coefficients of h(t)h′′(t) and h4(t), we derive m = 1
in formula (31). That is, we assume that the solution of Eq. 38 has the form

h(t) = B1

√
R + w2 + A1w + A0, (39)

where w(t) is a solution of Eq. 32, and R, B1 and Ai (i = 0, 1) are to be deter-
mined. Substituting (39) into (38) and equating the coefficients of wi(R + w2)l/2

(i = 1, 2, 3, 4, l = 0, 1), we get a resulting algebraic system with unknowns B1, Ai
(i = 0, 1), and R.

2A0A1 + α(A2
1 + B2

1) + 6A1B2
1 − 24µA1A0B2

1 = 0,

αA0A1 − 2γ B2
1 + 6B2

1A0 − 12µA2
0B2

1 = 0,

−2γ A0B1 + 3A2
0B1 − 4µA3

0B1 = 0,

αA0 − 4γ A1 + 12A1A0 − 24µA1A2
0 = 0,

6A2
1B1 + A0B1 − 24µA2

1A0B1 + αA1B1 = 0,

A0B1 + 2B3
1 + αA1B1 − 8µA0B3

1 = 0.

Solving the above system consistently with aid of maple when 16µγ − 3 + α2 = 0, we
have two cases as follows

Case 1 A1 = ± 1
4

√
3
µ

, A0 = 3∓α
√

3µ
8µ

, B1 = ± 1
4

√
3
µ

, R = − 16
3 µA2

0;

Case 2 A1 = ± 1
2

√
3
µ

, A0 = 3∓α
√

3µ
8µ

, B1 = 0, R = − 4
3µA2

0.
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Hence, according to (35) and (36), from Case 1, when µ > 0 we obtain that Eq. 8
has exact solutions:

x1(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± tanh

[√−R(t − t0)
]

± isech
[√−R(t − t0)

])]1/2

,

(40)

x2(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± coth

[√−R(t − t0)
]

± icosech
[√−R(t − t0)

])]1/2

(41)

and when µ < 0 Eq. 8 has exact solutions:

x3(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i tan

[√
R(t − t0)

]
± i sec

[√
R(t − t0)

])]1/2

,

(42)

x4(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i cot

[√
R(t − t0)

]
± icosec

[√
R(t − t0)

])]1/2

,

(43)

where R is the same as in Case 1, and t0 is an arbitrary constant.
Similarly, for Case 2, when µ > 0 we obtain that Eq. 8 has exact solutions:

x5(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± tanh

[√−R(t − t0)
])]1/2

, (44)

x6(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± coth

[√−R(t − t0)
])]1/2

, (45)

and when µ < 0 Eq. 8 has exact solutions:

x7(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i tan

[√
R(t − t0)

])]1/2

, (46)

x8(t) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i cot

[√
R(t − t0)

])]1/2

, (47)

where R is the same as given in Case 2, and t0 is an arbitrary constant.
It is remarkable that formula (21) in the preceding section is identical to (44)

when α = 0. Apparently, unbounded solution (45) is also able to be derived through
analyzing the corresponding homoclinic or heteroclinic trajectory of system (17).

4 Uniformly translating solutions to CGLE

We note that if the ratio of the corresponding coefficients in Eqs. 6 and 7 is equal
to each other, then Eq. 6 becomes identical to Eq. 7, and both of them have the
same form as the Duffing–van der Pol equation (8). Hence all arguments and results
of Eq. 8 can be applied. In this section, we return to CGBE (1) and are going to
construct uniformly translating solutions to CGLE (1) based on explicit and implicit
results obtained in the last two sections.
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In the following discussion, we assume that all coefficients of Eqs. 1 and 5 satisfy

b1

c1
= v − 2kc1 − 2c1D

2kb1 + 2b1D
= 3b4 + 2b5 − 4Bc1

4Bb1 + 3c4 + 2c5

= α − b1D2 − 2kb1D − b1k2

w − c1D2 + vD − 2kDc1 − c1k2 = −b1B2 + c4 + b3

b4 − c1B2 + c3

= − 2b1DB + 2kb1B + c4D + c4k + b2

vB − 2c1DB − 2kc1B + b4D + c2 + b4k
(48)

and

2b1DB + 2kb1B + c4D + c4k + b2

b1
= −1. (49)

Denote that

α = v − 2kc1 − 2c1D
b1

, β = 3b4 + 2b5 − 4Bc1

b1
,

γ = b1D2 + 2kb1D + b1k2 − α

b1
, µ = b1B2 + c4 + b3

b1
. (50)

Following formulas (14), (15), (18)–(22), and (40)–(47), we obtain several classes of
uniformly translating solutions to CGBE (1) immediately as follows:

Case 1 When b1B2 + c4 + b3 = 0, b4 − c1B2 + c3 = 0, αβ = 4 and β2γ = −3, CGLE
(1) has uniformly translating solutions of form (2), namely

u(x, t) = ei(kx−wt) · û(x − vt),

û(ξ) = a(ξ) · eiφ(ξ), ξ = x − vt,

where k, w, v satisfy (48) and (49), φ(ξ) is determined by Eq. 5, and a(ξ) is given by

a1(ξ) = −ρ(ξ)exp[(−1/β)ξ ],
where ρ is determined by the implicit function

[
ρ + d

ρ2 − dρ + d2

][
(1 + √

3i)ρ − 2d

(1 − √
3i)ρ − 2d

]

= T0exp
[

6c
d

(
exp[(−2/β)ξ ] − ξ0

)
]

,

where T0 = 3
√

β2/(6c) (here c is nonzero constant). Particularly, when c is zero, a(ξ)

becomes

a2(ξ) = ±
√−3C1e(1/β)ξ

β
√

C1e(2/β)ξ + C2
,

where both C1 and C2 are arbitrary constants.

Case 2 When α = β = 0 in (50), and either b1B2 + c4 + b3 = 0, b4 − c1B2 + c3 = 0
and b1(α − b1D2 − 2kb1D − b1k2)<0, or b1(b1B2 + c4 + b3) < 0, and b1(α − b1D2 −
2kb1D − b1k2) < 0, CGLE (1) has uniformly translating solutions of form (2), where
k, w, v satisfy (48) and (49), φ(ξ) is determined by Eq. 5, and a(ξ) is given by
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a3(ξ)= ±

⎧
⎪⎪⎨

⎪⎪⎩

γ

√
3b2

1
3b2

1−16(b1B2+c4+b3)(b1D2+2kb1D+b1k2−α)
sech2√γ (ξ − ξ0)

1
2 +

(
1
4

√
3b2

1
3b2

1−16(b1B2+c4+b3)(b1D2+2kb1D+b1k2−α)
− 1

4

)
sech2√γ (ξ − ξ0)

⎫
⎪⎪⎬

⎪⎪⎭

1/2

,

where γ is the same as given in (50) and ξ0 is an arbitrary constant.

Case 3 When α = β = 0 in (50), b1(b1B2 + c4 + b3) > 0 and b1(b1D2 + 2kb1D +
b1k2 − α) < 0, CGLE (1) has uniformly translating solutions of form (2), where φ(ξ)

is determined by Eq. 5 and a(ξ) is given by

a4(ξ) =
√√

1 − 4γµ + 1
2µ

{
1 − sech S(ξ − ξ0)

1 − ν sech S(ξ − ξ0)

}1/2

,

where

S = 4
√

4(1 − 4µγ )

√√
1 − 4γµ + 1

2µ
, ν = 1 + 4

√
1 − 4µγ

−1 + 2
√

1 − 4µγ
, (51)

here µ and γ are the same as given in (50).

Case 4 When α = β = 0 in (50), b1(b1B2+c4+b3) > 0, b1(b1D2+2kb1D+b1k2−α)>0
and µ, γ in (50) satisfy 1/4 > µγ > 3/16, CGLE (1) has uniformly translating solu-
tions of form (2), where φ(ξ) is determined by Eq. 5 and a(ξ) is given by

a5(ξ) =
√√

1 − 4γµ + 1
2µ

{
1 + sech S(ξ − ξ0)

1 + ν sech S(ξ − ξ0)

}1/2

,

where S and ν are the same as given in (51).

Case 5 When µ, γ in (50) satisfy α2 + 16µγ − 3 = 0 and b1(b1B2 + c4 + b3) > 0,
CGLE (1) has uniformly translating solutions of form (2), where φ(ξ) is determined
by Eq. 5 and a(ξ) is given by either

a6(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± tanh

[√−R(ξ − ξ0)
]

± i sech
[√−R(ξ − ξ0)

])]1/2

or

a7(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± coth

[√−R(ξ − ξ0)
]

± i cosech
[√−R(ξ − ξ0)

])]1/2

where R = − 16
3 µ

(
3∓α

√
3µ

8µ

)2
and ξ0 is an arbitrary constant.

Case 6 When µ, γ in (50) satisfy α2 + 16µγ − 3 = 0 and b1(b1B2 + c4 + b3) < 0,
CGLE (1) has uniformly translating solutions of form (2), where φ(ξ) is determined
by Eq. 5 and a(ξ) is given by either

a8(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i tan

[√
R(ξ − ξ0)

]
± i sec

[√
R(ξ − ξ0)

])]1/2
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or

a9(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i cot

[√
R(ξ − ξ0)

]
± i cosec

[√
R(ξ − ξ0)

])]1/2

,

where R = − 16
3 µ

(
3∓α

√
3µ

8µ

)2
and ξ0 is an arbitrary constant.

Case 7 When µ, γ in (50) satisfy α2 + 16µγ − 3 = 0 and b1(b1B2 + c4 + b3) > 0,
CGLE (1) has uniformly translating solutions of form (2), where φ(ξ) is determined
by Eq. 5 and a(ξ) is given by either

a10(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± tanh

[√−R(ξ − ξ0)
])]1/2

,

or

a11(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± coth

[√−R(ξ − ξ0)
])]1/2

,

where R = − 4
3µ

(
3∓α

√
3µ

8µ

)2
and ξ0 is an arbitrary constant.

Case 8 When µ, γ in (50) satisfy α2 + 16µγ − 3 = 0 and b1(b1B2 + c4 + b3) < 0,
CGLE (1) has uniformly translating solutions of form (2), where φ(ξ) is determined
by Eq. 5 and a(ξ) is given by either

a12(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i tan

[√
R(ξ − ξ0)

])]1/2

or

a13(ξ) =
[

3 ∓ α
√

3µ

8µ

(
1 ± i cot

[√
R(ξ − ξ0)

])]1/2

,

where R = − 4
3µ

(
3∓α

√
3µ

8µ

)2
and ξ0 is an arbitrary constant.

5 Discussion

A great number of nonconvex dissipative systems are known to display solutions we
can call “coherent structures”. These states are either themselves localized in space or
they consist of a spatially extended regular pattern with a localized defect. Examples
are kink-profile waves and bell-profile waves in one-dimensional systems, and targets,
spirals, dislocations or grain boundaries in two-dimension cases. Such structures have
been identified in experiments on thermal convection in pure fluids and binary mix-
tures [24,25], on parametric surface waves in fluids [26], on the onset of oscillatory
convection in binary fluid mixtures [27,28], in nonlinear light-wave propagation in
fibers [29], and on nonlinear traveling wave convection in a narrow annular cell [30].
They play an important role in the dynamics of nonconvex systems, for example in the
selection of a final steady pattern at long times, and in the time evolution of periodic,
quasiperiodic or disordered (chaotic) patterns.
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A simple set of models that account for this type of behavior are the CGLE or its
generalizations, of which a prototype is Eq. 1 without the last two terms. The present
study provides a connection between Eq. 1 and a Duffing–van der Pol equation (8). It
first confines itself to explicit and implicit exact solutions of the Duffing–van der Pol
equation with two polynomial nonlinearities by means of analyzing the correspond-
ing homoclinic or heteroclinic trajectories and a general ansatz, and then focuses
on the application to CGLE. Several classes of uniformly translating solutions are
constructed.

It is worthwhile to mention that the application does not depend on the particular
example of CGLE. One can apply the techniques and results described in this and a
companion article [4] (referred to as Paper I, in the preceding) to the study of some
other nonlinear differential equations, for instance,

(1) Generalized derivative Schrödinger equation [31]: ut = ic1uxx+ic3|u2|u+ic5|u|4u+
[(s0 + s2|u|2)u] = 0;

(2) Pochhammer–Chree equation [32]: utt − uttxx − (a1u + a3u3 + a5u5)xx = 0;
(3) Burgers-KdV-type equation [33]: ut + αupux + βu2pux + γ uxx + µuxxx = 0;
(4) Generalized Klein–Gordon equation [34]: utt − (uxx +uyy)+α2ut +g(uu∗)u = 0,

where g is a polynomial with degree five;
(5) Combined dissipative double-dispersive equation [35]: utt − α1uxx − α2uxxt −

α3(u)3
xx − α4(u)5

xx − α6uxxxx + α7uxxtt = 0;
(6) Kundu equation [36]: iut + uxx + β|u|pu + γ |u|2pu + iα(|u|pu)x + iρ(|u|p)xu = 0.
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